Measurement of Brain Function Using Near-Infrared Spectroscopy (NIRS)
نویسندگان
چکیده
Near-infrared spectroscopy (NIRS) has gained attention in recent years (Hoshi et al., 2001; Tamura, 2003). This non-invasive technique uses near-infrared light to evaluate increases or decreases in oxygenated hemoglobin or deoxygenated hemoglobin in tissues below the body surface. NIRS can detect the hemodynamics of the brain in real time while the subject is moving. Brain activity can therefore be measured in various environments. Recent research has used NIRS to measure brain activity in a train driver (Kojima et al., 2005, 2006). NIRS has also been used to evaluate the mental activity of an individual driving a car in a driving simulator (Shimizu et al., 2009). Various arguments have focused on interpretation of signals obtained from NIRS, and no uniform signal-processing method has yet been established. Averaging and baseline correction are conventional signal-processing methods used for the NIRS signal. These methods require block design, an experimental technique that involves repeating the same stimuli (tasks) and resting multiple times in order to detect brain activation during a task. However, brain activation has been noted to gradually decline when a subject repeats the same task multiple times (Takahashi et al., 2006). Fourier analysis, which is frequently used for signal analysis, transforms information in the time domain into the frequency domain through the Fourier transform. However, time information is lost in the course of the transform. As the NIRS signal fluctuates, timefrequency analysis is suitable for the NIRS signal. The wavelet transform is an efficient method for time-frequency analysis (Mallat, 1998). This approach adapts the window width in time and frequency so that the window width in frequency becomes smaller when the window width in time is large, or the window width in frequency becomes larger when the window width in time is small. Multi-resolution analysis (MRA) (Mallat, 1989) decomposes the signal into different scales of resolution. MRA with an orthonormal wavelet base effectively facilitates complete decomposition and reconstruction of the signal without losing original information from the signal. Oxygenated hemoglobin and deoxygenated hemoglobin as measured in NIRS are relative values from the beginning of measurement and vary between subjects and parts of the brain. Simple averaging of the NIRS signal thus should not be applied for statistical analysis. To solve this problem, we propose the Z-scored NIRS signal.
منابع مشابه
Estimating Nitrogen and Acid Detergent Fiber Contents of Grass Species using Near Infrared Reflectance Spectroscopy (NIRS)
Chemical assessments of forage clearly determine the forage quality; however, traditional methods of analysis are somehow time consuming, costly, and technically demanding. Near Infrared Reflectance Spectroscopy (NIRS) has been reported as a method for evaluating chemical composition of agriculture products, food, and forage and has several advantages over chemical analyses such as conducting c...
متن کاملPotential of Near-Infrared Reflectance Spectroscopy (NIRS) to Predict Nutrient Composition of Bromus tomentellus
Determination of forage quality of available species is one of the fundamentalfactors for the management of rangelands. Near-Infrared Reflectance Spectroscopy (NIRS)was used to analysis the Nitrogen (N), Acid Detergent Fiber (ADF), Dry MatterDigestibility (DMD) and Metabolizable Energy (ME) content of three phenological stages(vegetative, flowering and seeding) of Bromus tomentellus samples in ...
متن کاملDetermination of Protein and Moisture in Fishmeal by Near-Infrared Reflectance Spectroscopy and Multivariate Regression Based on Partial Least Squares
The potential of Near Infrared Reflectance Spectroscopy (NIRS) as a fast method to predict the Crude Protein (CP) and Moisture (M) content in fishmeal by scanning spectra between 1000 and 2500 nm using multivariate regression technique based on Partial Least Squares (PLS) was evaluated. The coefficient of determination in calibration (R2C) and Standard Error of Calibra...
متن کاملClinical application of near-infrared spectroscopy in patients with traumatic brain injury: a review of the progress of the field.
Near-infrared spectroscopy (NIRS) is a technique by which the interaction between light in the near-infrared spectrum and matter can be quantitatively measured to provide information about the particular chromophore. Study into the clinical application of NIRS for traumatic brain injury (TBI) began in the 1990s with early reports of the ability to detect intracranial hematomas using NIRS. We hi...
متن کاملMotion illusion activates the visual motion area of the brain: a near-infrared spectroscopy (NIRS) study.
Near-infrared spectroscopy (NIRS) enables noninvasive measurement of concentration changes of oxy- and deoxy-hemoglobin. The present study investigated cerebral representations of motion illusion by NIRS and examined several experimental procedures to determine an efficient procedure that can shorten the experimental time. We compared hemodynamic responses to figures with and without motion ill...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2012